Concentration of the Kirchhoff index for Erdős-Rényi graphs
نویسندگان
چکیده
Given an undirected graph, the resistance distance between two nodes is the resistance one would measure between these two nodes in an electrical network if edges were resistors. Summing these distances over all pairs of nodes yields the so-called Kirchhoff index of the graph, which measures its overall connectivity. In this work, we consider Erdős-Rényi random graphs. Since the graphs are random, their Kirchhoff indices are random variables. We give formulas for the expected value of the Kirchhoff index and show it concentrates around its expectation. We achieve this by studying the trace of the pseudoinverse of the Laplacian of Erdős-Rényi graphs. For synchronization (a class of estimation problems on graphs) our results imply that acquiring pairwise measurements uniformly at random is a good strategy, even if only a vanishing proportion of the measurements can be acquired.
منابع مشابه
The Laplacian Polynomial and Kirchhoff Index of the k-th Semi Total Point Graphs
The k-th semi total point graph of a graph G, , is a graph obtained from G by adding k vertices corresponding to each edge and connecting them to the endpoints of edge considered. In this paper, a formula for Laplacian polynomial of in terms of characteristic and Laplacian polynomials of G is computed, where is a connected regular graph.The Kirchhoff index of is also computed.
متن کاملOn Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs
Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...
متن کاملScaling limits for critical inhomogeneous random graphs with finite third moments∗
We identify the scaling limit for the sizes of the largest components at criticality for inhomogeneous random graphs with weights that have finite third moments. We show that the sizes of the (rescaled) components converge to the excursion lengths of an inhomogeneous Brownian motion, which extends results of Aldous [1] for the critical behavior of Erdős-Rényi random graphs. We rely heavily on m...
متن کاملComputing the Line Index of Balance Using Integer Programming Optimisation
An important measure of a signed graph is the line index of balance which has several applications in many fields. However, this graph-theoretic measure was underused for decades because of the inherent complexity in its computation which is closely related to solving NP-hard graph optimisation problems like MAXCUT. We develop new quadratic and linear programming models to compute the line inde...
متن کاملAnomalous conductance and diffusion in complex networks
We study transport properties such as conductance and diffusion of complex networks such as scale-free and Erdős-Rényi networks. We consider the equivalent conductance G between two arbitrarily chosen nodes of random scale-free networks with degree distribution P (k) ∼ k−λ and Erdős-Rényi networks in which each link has the same unit resistance. Our theoretical analysis for scale-free networks ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systems & Control Letters
دوره 74 شماره
صفحات -
تاریخ انتشار 2014